University of Wisconsin - Madison
College of Engineering [EGR]
Last Offered: 2015-2016 Spring [1164]
Direct Link to this Syllabus:
http://aefis.wisc.edu/index.cfm/page/CourseAdmin.ViewABET?coursecatalogid=144&pdf=True

1. **E C E 220, Electrodynamics I**
2. **Credits :** 3
 Contact Hours : 4.0
3. **Textbook and Materials :** Fundamentals of Applied Electromagnetics; Fawwaz T. Ulaby, Eric Michiel; 6; 2010
 a. **Other Supplemental Materials :** None

Specific Course Information :

a. **Brief description of the content of the course (Course Catalog Description) :** Potential theory; static and dynamic electric and magnetic fields; macroscopic theory of dielectric and magnetic materials; Maxwell's equations; boundary conditions; wave equation; introduction to transmission lines.

b. **Pre-requisites or Co-requisites :** Physics 202, ECE 219; ECE 230 or concurrent registration

c. **This is a Required course.**

Specific Goals for the Course :

a. **Course Outcomes :**

1. This is the first of the two courses on beginning level electrodynamics.
2. The purpose of the course is to provide sophomore/junior electrical engineering students with the fundamental methods to analyze and understand electromagnetic field problems that arise in various branches of engineering science.

ABET Student Learning Outcomes :
(a) Ability to apply mathematics, science and engineering principles.
(d) Ability to function on multidisciplinary teams.
(k) Ability to use the techniques, skills and modern engineering tools necessary for engineering practice.

- **Brief List of Topics to be Covered**: Introduction to course; Review of vector operations
 - Orthogonal coordinate systems and change of coordinates
 - Integrals containing vector functions
 - Gradient of a scalar field and divergence of a vector field
 - Divergence Theorem
 - Curl of a vector field and Stokes' theorem
 - Theorems and Identities
 - Fundamental postulates of electrostatics and Coulomb's Law
 - Electric field due to a system of discrete charges
 - Electric field due to a continuous distribution of charge
 - Gauss' Law and applications
 - Electric Potential
 - Conductors in static electric field
 - Dielectrics in static electric fields
 - Electric Flux Density, dielectric constant
 - Boundary Conditions
 - Capacitor and Capacitance
 - Method of Images
 - Nature of Current and Current Density
 - Resistance of a Conductor
 - The Equation of Continuity, Relaxation Time
 - Joule’s Law
 - Boundary Conditions for the current density
 - The Electromotive Force
 - The Biot-Savart Law
 - Ampere’s Force Law
 - Magnetic Torque
 - Magnetic Flux and Gauss’s Law for Magnetic Fields
 - Magnetic Vector Potential
 - Magnetic Field Intensity and Ampere’ Circuital Law
 - Magnetic Material
 - Boundary Conditions for Magnetic Fields
 - Energy in a Magnetic Field
 - Magnetic Circuits
 - Inductance